With the continuous advancement of my country's economic development and social changes, the pattern of population migration has also changed accordingly. The continuous acceleration of urbanization has gradually formed a pattern in which central cities drive urban agglomerations, which in turn drive regional economic development. In addition, with the rapid improvement of transportation infrastructure, especially the high-speed rail network, population mobility has greatly increased, and my country's population has shown the characteristics of accelerating agglomeration in central cities and urban agglomerations in terms of spatial structure. From the migration and flow of population, we can understand information on various aspects of economic development, public services, urban planning and governance capabilities of various cities. From a more macro perspective, analyzing population mobility and migration plays an important role in adjusting population policies, analyzing labor surpluses and shortages, promoting regional cultural exchanges, and even the integration of ethnic groups and races.
Especially during the 2019 COVID-19 pandemic, population mobility information is crucial. Due to the current developed transportation and the outbreak of the epidemic around the Spring Festival, high-frequency and large-scale population movement has brought difficulties to epidemic prevention and control. The restrictions on population movement in various regions can reflect the local prevention and control level to a certain extent; through the insight into the flow and change trend of population, various regions and departments can carry out urban management, resource planning and allocation more efficiently.
The CnOpenData data team launched population migration big data, including information on the source of migration in each region, information on the destination of migration in each region, and information on the travel intensity within each city Three sub-modules, covering the overall trend of migration in and out of cities and provinces and detailed data on migration in and out, providing high-quality big data samples for related research.
Time interval
- Trend and detailed table: 2020.01.12-2020.03.31; 2020.9.22-2021.3.8; 2021.9.13-2022.4.30;
- Intra-city travel intensity information: 2019.01.12-2020.03.31
Field display
Information module of the source of migration in each region
Overall trend of the source city of migration |
General trend of the province of immigration |
Details of the city of immigration |
Details of the province of immigration |
Immigration city |
Immigration province |
Immigration city |
Immigration province |
Immigration city code |
Immigration province code |
Immigration city code |
Immigration province code |
Immigration type |
Immigration type |
Type of migration |
Type of migration |
Date |
Date |
Date |
Date |
Migration scale index |
Migration scale index |
Source city of migration |
Source city of migration |
|
|
Source city code of migration |
Source city code of migration |
|
|
Province of the source of immigrants |
Ratio of immigrant population |
|
|
Province code of the source of immigrants |
|
|
|
Ratio of immigrant population |
|
Information module of the destination of immigrants in each region
< /tr>
Immigration Destination city general trend |
Outgoing destination province general trend |
Outgoing destination city details |
Outgoing destination province details |
Outgoing city |
Outgoing province |
Outgoing city |
Outgoing province |
Outgoing city code |
Outgoing province code |
Outgoing city code |
Outgoing province code |
In-migration and out-migration type |
Type of migration |
Type of migration |
Type of migration |
Date |
Date |
Date |
Date |
Migration scale index |
Migration scale index |
Destination city |
Destination province |
|
|
Destination city code |
Destination province code |
|
|
Province of the destination |
Ratio of the population that has moved out |
|
|
Province code of the destination |
|
|
|
Ratio of the population that has moved out |
|
Travel intensity information module within each city
Intra-city travel intensity information |
City |
City code |
Date |
Intra-city travel intensity index |
Sample data
Overall trend of cities of origin of migration
< td>0.3294108
move_in
Incoming cities City |
Incoming city code |
Incoming and outgoing type |
Date |
Migration scale index |
Xing'an League |
152200 |
move_in |
20190112 |
0.2923776 |
Xing'an League |
152200 |
move_in |
20190113 |
move_in | 20190115 | 0.2729376 |
Xing'an League | 152200 | move_in | 20190116 | 0.287874 |
Xing'an League | 152200 | move_in | 20190117 | 0.2818476 |
Xing'an League | 152200 | move_in | 20190118 | 0.272322 |
Xing'an League | 1 0.272 5164 |
Xing'an League | 152200 | move_in | 20190121 | 0.2928636 |
Xing'an League | 152200 | move_in | 20190122 | 0.3074112 |
Xing'an League | 152200 | move_in | 2 0190123 | 0.3002508 |
Xing'an League | 152200 | move_in | 20190124 | 0.2927016 |
Xinggan League | 152200 | move_in | 20190125 | 0.2969784 |
Xinggan League | 1522 00 | move_in | 20190126 | 0.3220236 |
Xing'an League | 152200 | mo ve_in | 20190127 | 0.3192048 |
Xing'an League | 152200 | move_in | 20190128 | 0.289818 |
Xing'an League | 152200 | move_in | 20190129 | 0.3302208 |
Xing'an League | 152200 | move_in | 20190130 | 0.3269808 |
Xing'an League | 152200 | move_in | 20190131 |
Xing'an League | 152200 | move_in | 20190201 | 0.3515076< /td> |
Xing'an League | 152200 | move_in | 20190202 | 0.3650184 |
Xing'an League | 152200 | move_in | 20190203 | 0.30942 |
Xing'an League | 152200 | move_in | 2019 1 52200 | move_in | 20190206 | 0.4611168 |
Xing'an League | 152200 | 20190207 | 0.4774788 |
Xing'an League | 152200 | move_in | 20190208 | 0.4261248 |
Xing'an League | 152200 | move_in | 20190209 | 0.3910356 |
Xing Anmeng |
152200 |
move_in |
20190210 |
0.4724244 |
Overall trend of provinces of migration
< td>11.0134404
20190208
Provinces of migration |
Province of migration code |
Type of migration |
Date |
Migration scale index |
Beijing | 110000 | move_in | 20190112 | 7.6650624 |
Beijing | 110000 | move_in | 201901 13 | 7.8045444 |
Beijing | 110000 | move_in | 20190114 |
Beijing | 110000 | move_in | 20190115 | 8.2183572 |
Beijing | 110000 | move_in | 20190116 | 7.8952644 |
Beijing | 110000 | move_in< /td> | 20190117 | 8.4018384 |
Beijing | 110000 | move_in | 20190118 | 8.1269568 |
Beijing | 110000 | move_in | 20190119 | 7.9356672 |
Beijing | 1 10000 | move_in | 20190120 | 8.11053 |
Beijing | 110000 | move_in | 20190121 | 10.45373 04 |
Beijing | 110000 | move_in | 20190122 | 8.3364876 |
Beijing | 110000 | move_in | 20190123 | 8.807454 |
Beijing | 110000 | move_in | 2019012 4 | 9.0318564 |
Beijing | 110000 | move_in | 20190125 | 8.493012 |
Beijing | 110000 | move_in | 20190126 | 8.2345248 |
Beijing | 110000 | mo ve_in | 20190127 | 8.0546076 |
Beijing | 110000 | move_in | 20190128 | 9.7160148 |
Beijing | 110000 | move_in | 20190129 | 7.2672552 |
Beijing | 110000 | move_in | 20190130 | 6.6908268 |
Beijing | 11000 0 | move_in | 20190131 | 6.5529972 |
Beijing | 110000 | move_in | 20190201 | 5.969214 |
Beijing | 110000 | move_in | 20190202 | 5.3755488 |
Beijing | 110000 | move_in | 20190203 | 4.8103632 |
Beijing | 110000 | move_in | 20190204 | 4.38372 |
Beijing | 110000 | move_in | 20190205 | 4.72 72248 |
Beijing | 110000 | move_in | 20190206 | 7.8309504 |
Beijing | 110000 | move_in | 20190207 | 10.1478744 |
Beijing | 110000 | move_in | 12.6268308 |
Beijing | 110000 | move_in | 20190209 | 15.7712184 |
Beijing | 110000 | move_in | 20190210 | 23.261256 |
Details of cities of origin of migration
City of migration |
City of migration code |
Province of migration |
Province code of migration |
Type of migration |
Date |
City of migration |
City code of migration |
Province of migration |
Province code of migration |
Ratio of migration population |
廊坊市 |
131000 |
河北省 |
130000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
21.72 |
保定市 |
130600 |
河北省 |
130000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
9.83 |
天津市 |
120000 |
天津市 |
120000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
7.79 |
张家口市 |
130700 |
河北省 |
130000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
4.37 |
承德市 |
130800 |
河北省 |
130000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
2.46 |
唐山市 |
130200 |
河北省 |
130000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
2.42 |
石家庄市 |
130100 |
河北省 |
130000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
2.39 |
沧州市 |
130900 |
河北省 |
130000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
1.92 |
邯郸市 |
130400 |
河北省 |
130000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
1.81 |
上海市 |
310000 |
上海市 |
310000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
1.62 |
衡水市 |
131100 |
河北省 |
130000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
1.38 |
郑州市 |
410100 |
河南省 |
410000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
1.19 |
邢台市 |
130500 |
河北省 |
130000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
1.1 |
哈尔滨市 |
230100 |
黑龙江省 |
230000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.97 |
秦皇岛市 |
130300 |
河北省 |
130000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.95 |
西安市 |
610100 |
陕西省 |
610000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.93 |
济南市 |
|
山东省 |
370000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.88 |
沈阳市 |
210100 |
辽宁省 |
210000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.82 |
成都市 |
510100 |
四川省 |
510000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.81 |
太原市 |
140100 |
山西省 |
140000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.8 |
大同市 |
140200 |
山西省 |
140000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.77 |
深圳市 |
440300 |
广东省 |
440000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.77 |
呼和浩特市 |
150100 |
内蒙古自治区 |
150000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.76 |
广州市 |
440100 |
广东省 |
440000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.75 |
赤峰市 |
150400 |
内蒙古自治区 |
150000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.73 |
青岛市 |
370200 |
山东省 |
370000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.71 |
武汉市 |
420100 |
湖北省 |
420000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.7 |
长春市 |
220100 |
吉林省 |
220000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.7 |
德州市 |
371400 |
山东省 |
370000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.65 |
南京市 |
320100 |
江苏省 |
320000 |
move_in |
20200101 |
北京 |
110000 |
北京 |
110000 |
0.61 |
Details of provinces of migrants
16.19 < td>20200214
move_in
< td>Zhaotong
Zhaotong Yunnan
20200215 < td>1.05
migrant provinces |
migrant province code |
migration type |
date |
migrant city |
migrant city code |
migrant city province |
migrant city province code |
migrant population ratio |
Hainan Province |
460000 |
move_in |
20200213 |
Zhao Tong | 530600 | Yunnan | 530000 | 0.01 |
Sichuan Province | 510000 | move_in | 20200214 | Zhaotong | 530600 | Yunnan | 530000 | 56.65 |
Yunnan Province | 530000 | move_in | 20200214 | Zhaotong | 530600 | Yun South | 530000 | 23.54 |
Guizhou Province | 520000 | move_in | 20200214 | Zhaotong | 530600 | Yunnan | 530000 |
Chongqing |
500000 |
move_in |
20200214 |
Zhaotong |
530600 |
Yunnan |
530000 |
0.72 |
Guangxi Zhuang Autonomous Region |
4500 00 | move_in | 20200214 | Zhaotong | 530600 | Yunnan | 530000 | 0.47 |
Guangdong Province | 440000 | move_in | Zhaotong | 530600 | Yunnan | 530000 | 0.37 |
Hunan Province | 430000 | move_in | 20200214 | Zhaotong | 530600 | Yunnan | 530000 | 0.32 |
Zhejiang Province | 330000 | move_in | 20200214 | Zhaotong | 530600 | Yunnan | 530000 | 0.27 |
Hebei Province | 130000 | move_in | 20200214 | Zhaotong | 530600 | Yunnan | 530000 | 0.24 |
Shaanxi Province | 610000 | move_in | 20200214 | Zhaotong | 530600 | Yunnan | 530000 | 0.23 |
Mountain Western Province | 140000 | move_in | 20200214 | Zhaotong | 530600 | Yunnan | 530000 | 0.14 |
Henan Province | 410000 | 20200214 | Zhaotong | 530600 | Yunnan | 530000 | 0.1 |
Fujian Province | 350000 | mo ve_in | 20200214 | Zhaotong | 530600 | Yunnan | 530000 | 0.1 |
Shandong Province | 370000 | move_in | 20200214 | Zhaotong | 53060 0 | Yunnan | 530000 | 0.08 |
Gansu Province | 620000 | move_in | 20200214 | Zhaotong | 530600 | Yunnan | 530 000 | 0.07 |
Jiangsu Province | 320000 | move_in | 20200214 | Zhaotong | 530600 | Yunnan | 53000 0 | 0.07 |
Shanghai | 310000 | move_in | 20200214 | Zhaotong | 530600 | Yunnan | 530000 | 0.05 |
Hainan Province | 460000 | move_in | 20200214 | Zhaotong | 530600 | Yunnan | 530000 | 0.04 |
Jiangxi Province | 36 0000 | move_in
| 20200214 |
Zhaotong |
530600 |
Yunnan |
530000 |
0.04 |
Ningxia Hui Autonomous Region |
640000 |
move_in |
20200214 | 530600 | Yunnan | 530000 | 0.03 |
Heilongjiang Province | 230000 | move_in | 20200214 | 530600 | Yunnan | 530000 | 0.03 |
Anhui Province | 340000 | move_in | 20200214 | Zhaotong | 530600 | 530000 | 0.03 |
Beijing | 110000 | move_in | 20200214 | Zhaotong | 530600 | Yunnan | 530000 | 0.01 |
Qinghai Province |
630000 |
move_in |
20200214 |
Zhaotong |
530600 |
Yunnan |
530000 |
0.01 |
Inner Mongolia Autonomous Region |
150 000 | move_in | 20200214 | Zhaotong | 530600 | Yunnan | 530000 | 0.01 |
Sichuan Province | 51000 0 | move_in | 20200215 | Zhaotong | 530600 | Yunnan | 530000 | 54.52 |
Yunnan Province | 530000 | move_in | Zhaotong< /td> | 530600 | Yunnan | 530000 | 27.48 |
Guizhou Province | 520000 | move_in | 20200215 | Zhaotong | 530600 | Yunnan | 530000 | 13.76 |
Chongqing | 500000 | move_in | 20200215 | Zhaotong | 530600 | Yun South | 530000 |
Overall trend of out-migration destination cities
move_out 20190122 < td>move_out
move_out move_out
Out-migration cities |
Out-migration city code |
In-migration and out-migration types |
Date |
Migration scale index |
Xing'an League | 152200 | move_out | 20190112 | 0.2764692 |
Xing'an League | 152200 | move _out | 20190113 | 0.2617596 |
Xing'an League | 152200 | move_out | 20190114 | 0.2814264 |
Xing'an League | 152200 | 20190115 | 0.2637036 |
Xing'an League | 152200 | move_out | 20190116 | 0.2696652 |
Xing'an League | 152200 | move_out | 20190117 | 0.2622132 |
Xing'an League | 152200 | move_out | 20190118 | 0.2673324 |
Xing'an League | 152200 | move_out | 20190119 | 0.2839212 |
Xing'an League | 152200 | move_out | 2 0190120 | 0.2679804 |
Xing'an League | 152200 | move_out | 20190121 | 0.2807136 |
Xing'an League | 152200 | move_out | 0.2752056 |
Xing'an League | 152200 | move_out | 20190123 | 0.2814588 |
Xing'an League | 152200 | 20190124 | 0.2875176 |
Xing'an League | 152200 | move_out | 20190125 | 0.3008988 |
Xing'an League | 152200 | move_out | 20190126 | 0.3031344 |
Xing'an League | 152200 | move_out | 20190127 | 0.2913084 |
Xing'an League | 152200 | move_out | 20190128 | 0.2536596 |
Xing'an League | 152200 | move_out | 20190129 | move_out | 20190131 | 0.2805192 |
Xing'an League | 152200 | move_out | 20190201 | 0.2937708 |
Xing'an League | 152200 | 20190202 | 0.283338 |
Xing'an League | 152200 | move_out | 20190203 | 0.2683692 |
Xing'an League | 152200 | move_out | 20190204 | 0.2075544 |
Xing'an League | 152200 | move_out | 20190205 | 0.1867536 |
Xing'an League | 152200 | move_out | 20190206 | 0.407754 |
Xing'an League | 152200 | move_out | 201 90207 | 0. 4778028 |
Xing'an League | 152200 | move_out | 20190208 | 0.4813344 |
Xing'an League | 152200 | 2 0190209 |
0.4999968 |
Xing'an League |
152200 |
move_out |
20190210 |
0.6706152 |
Total number of provinces in which people moved out Trend
< tr> < td>110000 < tr>
16.8861348 10.2357432 < td>move_out
20190208
Outgoing province |
Outgoing province code |
Incoming and outgoing type |
Date |
Migration scale index |
Beijing |
110000 |
move_out | 20190112 | 11.2168152 |
Beijing | 110000 | move_out | 20190113 | 7.7077332 |
Beijing | move_out | 20190114 | 7.9039152 |
Beijing | 110000 | move_out | 20190115 | 7. 7890572 |
Beijing | 110000 | move_out | 20190116 | 8.2920996 |
Beijing | 110000 | move_out | 201901 17 | 8.49 3012 |
Beijing | 110000 | move_out | 20190118 | 9.471816 |
Beijing | 110000 | move_out | 2019011 9 | 12.126834 |
Beijing | 110000 | move_out | 20190120 | 9.4347828 |
Beijing | 11000 0 | move_out | 20190121 | 9.63495 |
Beijing | 110000 | move_out | 20190122 | 9.7305624 |
Beijing | 110000 | move_out | 20190123 | 10.0894896 |
Beijing | 110000 | move_out | 20190124 | 10.4697036 |
Beijing | 110000 | move_out | 20190125 | 12.1305276 |
Beijing | 110000 | move_out | 20190126 | 16.4122524 |
Beijing | 110000 | move_out | 20190127 | 14.2420032 |
Beijing | 110000 | move_out | 20190128 | 13.8025296 |
Beijing | 110000 | move_out | 20190129 | 13.7589516 |
Beijing | 110000 | move_out | 20190130 | 15.1157016 |
Beijing | 110000 | move_out | 20190131 | 17.3083068 |
Beijing | 110000 | move_out | 20190201 | 20.8861416 |
Beijing | 110000 | move_out | 20190202 | 21.948084 |
Beijing< /td> | 110000 | move_out | 20190203 | 20.105982 |
Beijing | 110000 | move_out | 20190204 |
Beijing | 110000 | move_out | 20190205 | 8.8961004 |
Beijing | 110000 | move_out | 20 190206 |
Beijing | 110000 | move_out | 20190207 | 8.8504164 |
Beijing | 110000 | 7.9952832 |
Beijing | 110000 | move_out | 20190209 | 7.7318388 |
Beijing | 110000 | move_out |
20190210 |
8.1899748 |
Details of the destination city
Outgoing city |
Outgoing city code |
Outgoing city province |
Outgoing city province code |
In and out type |
Date |
Outgoing destination city |
Outgoing destination city code |
Outgoing destination province |
Outgoing destination province code |
Outgoing population ratio |
景德镇市 |
360200 |
江西省 |
360000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.17 |
邯郸市 |
130400 |
河北省 |
130000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.17 |
新乡市 |
410700 |
河南省 |
410000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.17 |
汕头市 |
440500 |
广东省 |
440000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.16 |
昆明市 |
530100 |
云南省 |
530000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.15 |
抚州市 |
361000 |
江西省 |
360000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.15 |
保定市 |
130600 |
河北省 |
130000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.15 |
宜春市 |
360900 |
江西省 |
360000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.15 |
吉安市 |
360800 |
江西省 |
360000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.14 |
洛阳市 |
410300 |
河南省 |
410000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.14 |
沈阳市 |
210100 |
辽宁省 |
210000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.14 |
丽水市 |
331100 |
浙江省 |
330000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.14 |
威海市 |
371000 |
山东省 |
370000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.13 |
太原市 |
140100 |
山西省 |
140000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.13 |
南宁市 |
450100 |
广西壮族自治区 |
450000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.12 |
沧州市 |
130900 |
河北省 |
130000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.12 |
咸阳市 |
610400 |
陕西省 |
610000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.11 |
德州市 |
371400 |
山东省 |
370000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.11 |
贵阳市 |
520100 |
贵州省 |
520000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.11 |
泰安市 |
370900 |
山东省 |
370000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.11 |
漳州市 |
350600 |
福建省 |
350000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.11 |
聊城市 |
371500 |
山东省 |
370000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.11 |
中山市 |
442000 |
广东省 |
440000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.1 |
日照市 |
371100 |
山东省 |
370000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.1 |
漯河市 |
411100 |
河南省 |
410000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.09 |
淄博市 |
370300 |
山东省 |
370000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.09 |
安阳市 |
410500 |
河南省 |
410000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.09 |
唐山市 |
130200 |
河北省 |
130000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.09 |
揭阳市 |
445200 |
广东省 |
440000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.09 |
潮州市 |
445100 |
广东省 |
440000 |
move_out |
20200313 |
安徽 |
340000 |
安徽 |
340000 |
0.08 |
Details of the destination province
Yunnan < td>move_out
530000 530000 < td>20200128
Department of Departure |
Department of Departure Code |
Type of Departure |
Date |
Department of Departure |
Department of Departure Code |
Department of Departure Province |
Department of Departure Province Code |
Ratio of population moving out |
Jiangxi Province |
360000 |
move_out |
20200127 |
Pu'er |
530800 |
Yunnan |
530000 |
0.07 |
Anhui Province |
340000 | move_out | 20200127 | Pu'er | 530800 | Yunnan | 530000 | 0.05 |
Liaoning Province | 210000 | move_out | 20200127 | Pu'er | 530800 | Yunnan | 530000 | 0.03 |
Shaanxi Province | 610000 | move_out | 20200127 | Pu'er | 530800 | 530000 | 0.02 |
Jilin Province | 220000 | move_out | 20200127 | Pu'er | 530800 | Yunnan | 530000 | 0.01 |
Hainan Province | 460000 | move_out | 20200127 | Pu'er | 530800 | Yunnan< /td>
| 530000 |
0.01 |
Ningxia Hui Autonomous Region |
640000 |
move_out |
20200127 |
Pu'er |
530800 |
Yunnan |
530000 |
0.01 |
Hubei Province |
420000 | move_out | 20200127 | Pu'er | 530800 | Yunnan | 530000 | 0.01 |
Yunnan Province | 530000 | move_out | 20200128 | Pu'er | 530800 | Yunnan< /td> | 530000 | 93.11 |
Sichuan Province | 510000 | move_out | 20200128 | Pu'er | 530800 | Yunnan | 530000 | 2.34 |
Guizhou Province | 520000 | move_out | 20200128 | Pu'er | 530800 | Yunnan | 530000 | 1.19 |
Chongqing | 500000 | 20200128 | Pu'er | 530800 | Yunnan | 530000 | 0.71 |
Guangdong Province | 440000 | move_out | 20200128 | Pu'er | 530800 | Yunnan | 530000 | 0.5 |
Hunan Province | 430000 | move_out | 20200128 | Pu'er | 530800 | Yunnan | 530000 | 0.4 |
Zhejiang Province | 330000 | mo ve_out | 20200128 | Pu'er | 530800 | Yunnan | 530000 |
0.22 |
Guangxi Zhuang Autonomous Region |
450000 |
move_out |
20200128 |
Pu'er |
530800 |
Yunnan |
530000 |
0.17 |
Henan Province |
410000 |
move_out | 20200128 | Pu'er | 530800 | Yunnan | 530000 | 0.17 |
Beijing | 110000 | move_ out | 20200128 | Pu'er | 530800 | Yunnan | 0.15 |
Anhui Province | 340000 | move_out | 20200128 | Pu'er | 530800 | Yunnan | 0.14 |
Jiangxi Province | 360000 | mov e_out | 20200128 | Pu'er | 530800 | Yunnan | 530000 | 0.14 |
Jiangsu Province | 320000 | move _out | 20200128 | Pu'er | 530800 | Yunnan | 53 0000 | 0.14 |
Shanghai | 310000 | move_out | 20200128 | Pu'er | 530800 | Yunnan | 530 000 | 0.14 |
Fujian Province | 350000 | move_ou t | 20200128 | Pu'er | 530800 | Yunnan | 530000 | 0.11 |
Hubei Province | 420000 | move_ out | 20200128 | Pu'er | 530800 | Yunnan | 53000 0 | 0.07 |
Shaanxi Province | 610000 | move_out | 20200128 | Pu'er | 530800 | Yunnan | 530 000 | 0.06 |
Shandong Province | 370000 | move_out | 20200128 | Pu'er | 530800 | Yunnan | 530000 | 0.03 |
Shanxi Province | 140000 | move_out | 20200128 | Pu'er | 530800 | Yunnan | 530000 | 0.02 |
Hebei Province | 130000 | move_out | 20200128 | Pu'er | 530800 | Yunnan | 530000 | 0.02 |
Liaoning Province | 210000 | move_out | 20200128 | Pu'er | 530800 | Yunnan | 530000 | 0.02 |
Tianjin | 120000 | move_out | Pu'er | 530800 | Yunnan | 530000 |
0.01 |
Information on travel intensity within each city
5.1698
City |
City code |
Date |
Intra-city travel pre-index |
Beijing |
110000 |
2019011 2 | 3.8859 |
Beijing | 110000 | 20190113 | 3.6699 |
Beijing | 110000 | 20190114 | 5.2773 |
Beijing | 110000 | 20190115< /td> | 5.396 |
Beijing | 110000 | 20190116 | 5.2085 |
Beijing | 110000 | 20190117 | 5.314 |
Beijing | 110000 | 20190118 | 5.4196 |
Beijing | 110000 | 20190119 | 3.9943 |
Beijing | 110000 | 20190120 | 3.7424 |
Beijing | 110000 | 20190121 | 5.1219 |
Beijing | 110000 | 20190122 | 5.0817 |
Beijing | 110000 | 20190123 | 5.0606 |
Beijing | 110000 | 20190124 |
Beijing | 110000 | 20190125 | 4.9769 |
Beijing | 110000 | 20190126 | 3.6434 |
Beijing | 110000 | 20190127 | 3.3609 |
Beijing | 110000 | 20190128 | 4.7515 |
Beijing | 110000 | 20190129 | 4. 5689 |
Beijing | 110000 | 20190130 | 4. 3338 |
Beijing | 110000 | 20190131 | 4.2049 |
Beijing | 110000 | 20190201 | 3.52 28 |
Beijing | 110000 | 20190202 | 3.1 155 |
Beijing | 110000 | 20190203 | 2.3946 |
Beijing | 110000 | 20190204 | 2.075 2 |
Beijing | 110000 | 20190205 | 1.950 5 |
Beijing | 110000 | 20190206 | 2.0304 |
Beijing | 110000 | 20190207 | 1.9313 |
Beijing | 110000 | 20190208 | 1.9967< /td>
|
Beijing |
110000 |
20190209 |
2.0932 |
Beijing |
110000 |
20190210 |
2.1831 |
Data update frequency
Annual update
文件下载